其中PTP模型和Pub/Sub模型在JMS规范中有定义,消息中间件ActiveMQ就实现了JMS规范。然而一些消息中间件,并没有实现JMS规范,而是自己设计出了一套模型,例如Kafka和RocketMQ就采用了Partition模型。此外业界还有一些其他的消息投递模型,例如Transfer模型,这是笔者自己起的名字。
1、PTP模型
Point-to-Point,点对点通信模型。PTP是基于队列(Queue)的,一个队列可以有多个生产者,和多个消费者。消息服务器按照收到消息的先后顺序,将消息放到队列中。队列中的每一条消息,只能由一个消费者进行消费,消费之后就会从队列中移除。
需要注意的是,尽管这里使用Queue的概念,但并不是先进入队列消息,一定会被先消费。在存在多个下游Consumer情况下,一些消息中间件,例如ActiveMQ,为了提升消费能力,会将队列中的消息分发到不同Consumer并行进行处理。这意味着消息发送的时候可能是有序的,但是在消费的时候,就变成无序了。为了保证消费的有序,一些MQ提供了"专有消费者”或者"排他消费者”的概念,在这种情况下,队列中的消息仅允许一个消费者进行消费,如果存在多个消费者,那么从中选择一个。但是,这意味着在消息在处理中没有了并行性。如果消息量很多的情况下,将会产生消息积压。为了解决"专有消费者”的性能问题,一些消息中间件采用分区的概念来解决性能问题,我们将在后文进行介绍。
2、Pub/Sub模型
publish-and- subscribe, 即发布订阅模型。在Pub/Sub模型中,生产者将消息发布到一个主题(Topic)中,订阅了该Topic的所有下游消费者,都可以接收到这条消息。如下图:
通常情况下,一个条消息只要被消费一次就行了,那么什么情况下需要所有的消费者都对这条消息进行消费呢?最典型的情况就是需要在内存中对数据进行缓存,并需要实时进行更新。例如,笔者做过一个违禁词系统,对用户输入的评论内容进行违禁词汇检测。这个违禁词系统,部署了在N台服务器上,为了提升检测性能,每台机器都会将违禁词库全量加载到内存中,词库的更新,是通过发送MQ消息来完成的。由于采用Pub/Sub模型,每台机器的consumer,都可以接收到这条消息,直接在内存中更新敏感词库即可。