1. 线程不安全是怎样的?
要搞清楚什么是线程安全,就要先了解线程不安全是什么样的。
比如下面这段代码,开启两个线程,对全局变量 number 各自增 10万次,每次增量 1。
from threading import Thread, Lock
number = 0
def target():
global number
for _ in range(1000000):
number += 1
thread_01 = Thread(targettarget=target)
thread_02 = Thread(targettarget=target)
thread_01.start()
thread_02.start()
thread_01.join()
thread_02.join()
print(number)
正常我们的预期输出结果,一个线程自增100万,两个线程就自增 200 万嘛,输出肯定为 2000000 。
可事实却并不是你想的那样,不管你运行多少次,每次输出的结果都会不一样,而这些输出结果都有一个特点是,都小于 200 万。
以下是执行三次的结果
1459782
1379891
1432921
这种现象就是线程不安全,究其根因,其实是我们的操作 number += 1 ,不是原子操作,才会导致的线程不安全。
2. 什么是原子操作?
原子操作(atomic operation),指不会被线程调度机制打断的操作,这种操作一旦开始,就一直运行到结束,中间不会切换到其他线程。
它有点类似数据库中的 事务。
在 Python 的官方文档上,列出了一些常见原子操作
L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()
而下面这些就不是原子操作
ii = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1
像上面的我使用自增操作 number += 1,其实等价于 number = number + 1,可以看到这种可以拆分成多个步骤(先读取相加再赋值),并不属于原子操作。
这样就导致多个线程同时读取时,有可能读取到同一个 number 值,读取两次,却只加了一次,最终导致自增的次数小于预期。
当我们还是无法确定我们的代码是否具有原子性的时候,可以尝试通过 dis 模块里的 dis 函数来查看